
1

Phoenix: A Dynamically Reconfigurable Hybrid
Memory System Combining Caching and Migration

Yifan Hua, Student Member, IEEE, Shengan Zheng, Weihan Kong, Cong Zhou, and Linpeng Huang, Senior
Member, IEEE

Abstract—With the growing memory requirements of modern
data-intensive applications for high performance and large ca-
pacity, building hybrid memory systems with different memory
technologies has become a dominant trend to satisfy these
demands. For better system performance, frequently accessed hot
data is fetched into the fast and capacity-limited near memory
(NM) while cold data is evicted to the slow and large far memory
(FM). In prior works, NM is used as a cache of FM (cNM),
part of OS-visible memory (mNM), and a fixed capacity of cNM
and mNM. This paper presents Phoenix, a novel hybrid memory
architecture that harnesses the advantages of both cNM and
mNM. The ratio of cNM to mNM is adjustable during runtime
to better exploit both temporal and spatial locality benefits for
different memory access patterns. All cNM and mNM space is
multiplexed to mitigate the data movement overhead for the mode
switch between cNM and mNM. In our evaluations, Phoenix
outperforms state-of-the-art designs by an average of 18.2% and
consumes orders of magnitude less metadata storage space.

Index Terms—Hybrid memory system, Cache mode, Memory
mode, Data migration policy, Spatial and temporal locality.

I. INTRODUCTION

MANY modern big-data applications have vast datasets
that dwarf capacity-limited SRAM caches, resulting in

excessive cache miss requests and severe bandwidth pressure
to off-chip DRAM modules [1]. Meanwhile, memory capacity
has become scarce for data-intensive applications [6], [58].
However, the widely used memory technology, DRAM, suffers
from device scalability problems [57]. Consequently, DRAM
is unable to meet the growing demand for either memory
bandwidth or capacity.

Various memory technologies have been developed to meet
the memory requirements in terms of capacity, bandwidth, ac-
cess latency, and cost for modern applications. The emergence
of Persistent Memory (PM) [43]–[45] and Compute Express
Link (CXL) [46], [55], [56] technologies exhibit the potential
to fulfill the demand for memory capacity at a lower cost. Be-
sides, the advancement of die-stacked technologies have given
rise to high-bandwidth memories such as Hybrid Memory
Cube (HMC) [36] and High-Bandwidth Memory (HBM) [34].
Unfortunately, none of these technologies can independently
meet the diverse memory demands across various application
domains. Consequently, the construction of hybrid memory
systems utilizing different memory technologies has become
the mainstream focus of recent research [2]–[27].

The authors are with the School of Electronic Information and Electrical
Engineering, Shanghai Jiao Tong University. Shengan Zheng is with the MoE
Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University.
E-mail: (huahuahuahua, shengan, weihan, cong258258, lphuang)@sjtu.edu.cn.
Corresponding authors: Shengan Zheng and Linpeng Huang.

In general, the hybrid memory system comprises different
types of memory technologies: one has a limited capacity with
better performance (higher bandwidth or lower latency), and
another has a larger capacity but relatively poorer performance.
For instance, hybrid memory systems [2]–[27] consist of on-
chip HBM and off-chip DRAM, local memory and remote
memory connected by CXL, or DRAM and PM. To avoid
constraints imposed by specific memory technologies in sub-
sequent discussions, we call the former Near Memory (NM)
and the latter Far Memory (FM) as in previous works [5],
[6], [23]. Recent works have employed NM as a cache of FM
(cNM) [10]–[12], [20], part of OS-visible memory (mNM) [3],
[7]–[9], and both cNM and mNM (hybrid mode) [23], [28].
cNM designs react fast to hotness changes by fetching all
requested data from FM to NM, but take the NM capacity
away from the memory system and have a bad performance for
workloads with weak temporal locality. mNM designs enhance
the OS-visible memory capacity and bandwidth efficiency,
but make the migration decision slower since only data with
potential for future reuse is migrated. Hybrid mode designs
aim to combine the advantages of cNM and mNM designs.

Unfortunately, existing hybrid mode designs [23], [28]
suffer from four limitations: (1) Incapability of supporting an
adjustable ratio of cNM to mNM during runtime. Fixed cNM
and mNM capacities lack the flexibility to match different
memory access patterns. (2) Unnecessary data migration over-
head for mode switch between cNM and mNM stemming from
the separate cNM and mNM space. For example, for evicting
a page from cNM to mNM, a victim page in mNM is swapped
out to FM, and then cached for the subsequent access, which
brings unnecessary migration cost. (3) Inability to efficiently
swap data between hybrid memories with lightweight data
remapping overhead. Data swap between mNM and FM either
sacrifices the swap efficiency for less remapping metadata
or requires a large amount of metadata to track the data
migration trajectories for high swap efficiency. (4) Large
metadata storage overhead for hybrid memory management.
Their space-inefficient metadata structures, such as pointers to
index pages in mNM and tags to manage cache lines in cNM,
consume significant storage space. Besides, they employ small
metadata management granularity to reduce over-fetching. Not
only is the potential spatial locality not fully exploited, but also
the metadata consumes large NM space.

In this paper, we propose a novel hybrid memory archi-
tecture named Phoenix to preserve the advantages of both
cNM and mNM designs while overcoming the above four
limitations, by adding a hardware-based hybrid memory man-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

2

agement controller (HMMC). All NM can be utilized as
cNM or OS-visible mNM. NM can be dynamically switched
between cNM and mNM over time to better exploit both
temporal and spatial locality benefits for different memory
access patterns. cNM can be compelled to become mNM for
high memory footprint condition to maximize the total system
memory capacity and reduce page faults. The mode switch
between cNM and mNM only requires updating metadata in
HMMC. Caching (in block granularity) and migration (in page
granularity) decisions are made based on workloads’ temporal
and spatial locality features, as well as the system memory
footprint. Phoenix employs a unified set-associative mecha-
nism for PRT (Page Location Entry Remapping Table) to track
page migration and record blocks’ caching information in an
NM page for evaluating the spatial locality. The page occupied
information is kept in a page occupied bit vector. A hotness
tracker is designed to track data hotness changes and provide
the temporal locality information. To minimize the migration
cost between cNM and mNM, all cNM and mNM space is not
separate but multiplexed to enable the mode switch process to
move only necessary data. For data swap between heteroge-
neous memories, a fast&slow swap mechanism is proposed to
mitigate the data remapping overhead while maintaining high
swap efficiency. To limit the metadata storage space, Phoenix
employs space-efficient metadata structures and suitable cNM
and mNM management granularities. Metadata for hybrid
memory management is placed in NM and cached in HMMC.
A lightweight metadata prefetcher is adopted to improve the
hit rate of the metadata buffer. Concisely, this paper makes the
following contributions:

• We present Phoenix, a novel hybrid memory architecture
in which NM can serve as both cNM and mNM. The ratio
of cNM to mNM is adjustable during runtime to better
exploit both temporal and spatial locality benefits for different
memory access patterns, without rebooting.

• All cNM and mNM space in Phoenix is not separate but
multiplexed, which minimizes the data movement overhead
for mode switch between cNM and mNM. The mode switch
only requires updating metadata in HMMC.

• For data swap between hybrid memories, we propose a
fast&slow swap mechanism to mitigate the data remapping
overhead while maintaining high swap efficiency.

• Phoenix greatly reduces the storage space for metadata by
1∼2 orders of magnitude through employing space-efficient
metadata structures and appropriate migration and caching
granularities with a low over-fetching risk.

• In our evaluations, Phoenix outperforms state-of-the-art
designs by 18.2%, and incurs 12.7% less NM traffic and 9.3%
less FM traffic on average.

II. BACKGROUND AND MOTIVATION

In order to provide fast and large capacity memory for
applications, many works combine NM with FM in hybrid
memory systems [2]–[4], [7]–[12], [20]–[23], [28], [29]. In
this section, we give the background of the hybrid memory
system, three types of NM utilization in prior hybrid memory
management designs, fast swap and slow swap approaches for
data migration, and our motivations.

A. Hybrid memory system

Various memory technologies exhibit different trade-offs
in terms of capacity, bandwidth, access latency, and cost. A
promising direction towards a more efficient memory system
design is to combine two memory technologies with com-
plementary characteristics in a hybrid memory system: near
memory (NM) has a limited capacity with better performance
(higher bandwidth or lower latency), and far memory (FM) has
a larger capacity but relatively poorer performance. In DRAM
and persistent memory (PM) hybrid memory systems [15],
[47]–[49], PM provides a larger memory capacity but has
higher read and write latency than traditional DRAM. Emerg-
ing compute express link (CXL) technologies [16], [26], [46],
[55], [56] can attach remote byte-addressable memory into the
physical address space of the host machine, which appears to
the program as a CPU-less NUMA node. Remote memory pro-
vides a larger memory capacity than local memory. However,
accessing remote memory requires additional CXL round-trip
latency. In on-chip HBM (high bandwidth memory) and off-
chip DRAM hybrid memory systems [2], [21], [23], [25],
HBM offers substantially higher memory bandwidth while
DRAM provides a larger memory capacity.

B. Three types of NM utilization

State-of-the-art designs leverage the NM in cache mode
(cNM), memory mode (mNM), and hybrid mode (both cNM
and mNM) in hybrid memory systems.
NM used as cNM: A large body of works have utilized NM as
cNM. They can be divided into two classes: block-based [10]–
[14], [17], [18] and page-based [20]–[22]. To enhance the
caching capacity and better exploit the temporal locality,
common block-based cNM manages data at 64B cache line
granularity. Unfortunately, tags may occupy 12.5% of the NM
capacity [11]. Besides, block-based cNM has a poor hit rate for
workloads with weak temporal and strong spatial locality [12].
Page-based cNM reduces the tag overhead by caching 1∼8KB
pages. However, many pages contain data that is not accessed
prior to the pages’ eviction from the cNM, wasting memory
bandwidth [20]. In general, small cache lines better exploit the
cache but have higher tag overhead. Large cache lines reduce
the tag overhead but may cause over-fetching.
NM used as mNM: Contrary to cNM designs, mNM designs
make all NM capacity visible to OS and have the potential
to utilize the bandwidth of all memories for serving memory
requests. As a result, they can potentially reap the benefits of
both higher aggregate memory bandwidth and larger memory
capacity. However, the high remapping overhead [2]–[6], [26]
and over-fetching issue caused by coarse migration granular-
ity [7]–[9], [27] still plague modern mNM designs.
NM in hybrid mode: Some research aims to combine the
advantages of both cNM and mNM, and they show that
hybrid mode can gain more performance benefits than single
mode. State-of-the-art hybrid mode designs adopt statically
reconfigurable mechanisms to manage the two modes. In
particular, KNL [28] supports 25% or 50% NM as cNM.
Hybrid2 [23] and Baryon [24] fix a small cNM capacity of
64MB. These OS-invisible cNM reduce the total memory

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

3

A B C D E F

NM FM

Initial state

Step 1

Step 2

Step 3

Page remapping table Page remapping table

(a) Fast swap (b) Slow swap

AOriginal Addr
Remapped Addr

B C D E F
A B C D E F

C B A D E FAOriginal Addr
Remapped Addr

B C D E F
C B A D E F

C D A B E FAOriginal Addr
Remapped Addr

B C D E F
C D A B E F

E D A B C FAOriginal Addr
Remapped Addr

B C D E F
C D E B A F

A B C D E F

NM FM

C B A D E F

C D A B E F

AOriginal Addr
Remapped Addr

B
A B

AOriginal Addr
Remapped Addr

B
C B

AOriginal Addr
Remapped Addr

B
C D

AOriginal Addr
Remapped Addr

B
E D

Initial state

Step 1

Step 2

Step 3 C D A B E F

C A E

E D C B A F

C A E
Page read Page write

Step 3.1 Step 3.2

Buffer Buffer

Fig. 1. Fast swap and slow swap.

capacity presented to the OS. All of these designs require
a system reboot to switch from one hybrid configuration to
another. The caching granularity in cNM is smaller than the
migration granularity in mNM, and the caching scheme is
more aggressive than the migration scheme, enabling cNM
to cache data with changeable hotness in finer granularity and
mNM to store data with stable hotness in coarser granularity.
Metadata for managing the cNM and mNM cannot be accom-
modated in SRAM. Hundreds of kilobytes of SRAM are used
as a metadata cache to store information about those hot pages.

C. Fast swap and slow swap

Memory mode and hybrid mode designs take two ap-
proaches for swapping data between FM and mNM: fast
swap [2], [3], [23], [54] and slow swap [4]–[8], [24].

Fast swap tracks the migration trajectories of all memory
pages to permit them to be remapped to any memory space.
Figure 1(a) gives an example to illustrate the fast swap process.
In the initial state, the six pages reside in their original
locations, with physical addresses matching those in the OS
page tables and TLBs. With the workload running, page C in
FM becomes hot and is swapped with page A in step 1. After
that, page D becomes hot and is swapped with page B in step
2. Later, page E becomes hotter than page C, where page E
should be migrated from FM to NM and page C should be
evicted from NM to FM. Since all memory pages are permitted
to be remapped to any memory space, page C does not need
to return to its original position in FM and is directly swapped
with page E in step 3. Each swap requires two page reads and
two page writes.

Slow swap only keeps track of the pages remapped to
NM and requires remapped pages to return to their original
position. The positions of all pages in FM can be inferred
from their physical address in page tables, with the exception
of pages currently remapped to NM. Figure 1(b) gives an
example to illustrate the slow swap process. Compared to fast
swap, the first two steps in slow swap are the same while step 3
requires additional page reads and writes and consumes more
data movement bandwidth. In step 3, since the remapped page
C should be evicted to its original position in FM, page C and
page E cannot be directly swapped. The three pages, C, A,
and E are read to three page buffers in step 3.1 and written
to their target positions in step 3.2, requiring three page reads
and writes. The slow swap generally consumes more memory

0%

100%

20%
40%
60%
80%

64 256 1K 4K 16K 64K
mcf

64K64 256 1K 4K 16K 64 256 1K 4K 16K 64K

N < 5 5 ≤ N < 10 10 ≤ N < 15 15 ≤ N < 20 20 ≤ N

wrf xz
Cache line size (Bytes)

Fig. 2. Percentage of cache lines with different access numbers before eviction
in 1GB cNM. N represents the average access number for each 64B data in
different sizes of cache lines.

bandwidth than the fast swap to replace a page in NM with
another page in FM, but requires less metadata to track the
migration trajectories of remapped pages.

D. Motivation

As described before, hybrid mode design provides an
opportunity to combine the advantages of both cNM and
mNM designs. However, state-of-the-art hybrid mode designs
experience four limitations as follows.

First, they fix the cNM and mNM capacity, which cannot
always meet the memory requirements for different memory
access patterns. Figure 2 shows the memory access patterns of
three representative SPEC2017 [60] workloads’ slices selected
by Simpoint [59] as an example: we collect the average access
number for each 64B data in different sizes of cache lines
before eviction in 1GB cNM. For the slice of mcf (strong
spatial and strong temporal locality), both the large and small
cache lines achieve a high access number. To reduce the
high tag overhead and better leverage the spatial locality
and memory bandwidth, most NM is preferable to be used
as mNM with large management granularity without causing
over-fetching. For the slice of wrf (weak spatial and strong
temporal locality), with the cache line size increasing, the
number of hot cache lines decreases, which means large cache
lines may bring over-fetching. Thus, a small part of NM is
better to serve as mNM to store those large hot data while
the other NM is recommended to be utilized as cNM with
small management granularity. For the slice of xz (strong
spatial and weak temporal locality), most data is rarely reused.
A large amount of data movement may generate significant
bandwidth cost and frequent hot data evictions. Thus, most
NM is favored as mNM with large management granularity
for better bandwidth efficiency and spatial locality, with a
non-aggressive migration scheme. To sum up, for different
categories of workloads, a fixed cNM capacity cannot fully

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

4

exploit the temporal and spatial locality and utilize all the
memory bandwidth. Worse still, they may cause over-fetching
and bring unnecessary data movement cost. Furthermore, these
fixed OS-invisible cNM reduce the total memory capacity
presented to OS and contribute to more page faults under high
memory footprint conditions. The ratio of cNM to mNM should
be dynamically adjustable over time.

Second, the statically reconfigurable designs consume more
memory bandwidth for data movement between cNM and
mNM due to the separate cNM and mNM space. For example,
for evicting a page from cNM to mNM, another mNM page
as a victim is swapped out to FM, and then cached for the
subsequent access. The data migration from one NM page
space to another NM page space brings extra unnecessary
migration costs. Thus, the space of cNM and mNM needs to be
multiplexed in order to minimize the data movement overhead
for switching the two modes.

Third, prior designs employ either fast swap or slow swap
mechanisms for data swap between mNM and FM. Fast
swap designs incur high metadata storage overhead for data
remapping while slow swap designs result in low swap per-
formance. Considering the locality in memory access patterns
exhibited by the operating system, wherein the OS tends to
access memory within a specific address range over a period,
only a small portion of memory pages are potentially subject
to remapping during a period of workload’s running time.
Tracking the migration trajectories of a subset of memory
pages offers an opportunity to reduce the data remapping
overhead while maintaining high swap efficiency. Thus, the
mechanism for data swap between hybrid memories should be
redesigned.

Fourth, the metadata storage overhead in modern hybrid
mode designs cannot be ignored. They employ small caching
and migration granularities to lower the over-fetching risk. Not
only is the potential spatial locality not fully exploited, but
also the metadata consumes tens of megabytes of NM memory
space in a hybrid memory system with a capacity of several
gigabytes. These metadata cannot be accommodated in on-chip
SRAM and takes a large NM capacity away from the memory
system. Worse still, emerging PM [47]–[49] and CXL [46],
[55], [56] technologies can provide TB-level memory in a
hybrid memory system, and the metadata storage space can
reach tens of gigabytes. Space-inefficient metadata structures
such as pointers to index pages and tags to manage cNM cache
lines in state-of-the-art designs contribute to the large metadata
storage space as well. As a result, the metadata size should
be minimized as small as possible.

III. PHOENIX ARCHITECTURE

Phoenix is a hybrid memory architecture in which NM can
be used as either cNM or mNM. Data can be fetched from
FM to cNM in block size and migrated in page size between
FM and mNM. The ratio of cNM to mNM is dynamically
adjustable during runtime to match different memory access
patterns, without rebooting. Abbreviations and variables in this
paper are summarized in Table I and Table II, respectively.

Table I. Abbreviations in this paper.

Abbreviation Description
FM Far memory
NM Near memory
cNM NM used as a cache of FM
mNM NM used as OS-visible memory
HMMC Hybrid memory management controller
PLE Page location entry
PRT Page location entry remapping table.
BLE Block location entry
ADQ Address difference queue
ADE Address difference entry

Table II. Variables in this paper.

Variables in each remapping set for hotness tracking
Variable Definition
Rh NM occupied ratio
T Hotness threshold for page migration from FM to NM
Nc Number of cNM pages
Na Number of mNM pages where most blocks are accessed
Nn Number of mNM pages where most blocks are not accessed

Variables for metadata prefetching
Variable Definition
Daddr Address difference between two memory accesses
Raddr Prefetching range of memory address

A. Phoenix system overview

Figure 3 presents the overall architecture of our system. A
Hybrid Memory Management Controller (HMMC) is added
between the shared LLC and the memory layer to facilitate
the data caching and migration functionalities. Phoenix does
not modify the page tables, TLBs, and memory controllers.
Thus, there are no modifications to the address translation
between virtual and physical addresses, nor to the mapping
between physical addresses and actual memory locations.
Phoenix remaps the physical addresses from the OS to new
physical addresses by using the HMMC, and then maps the
new physical addresses to actual memory locations. Metadata
of Phoenix is stored in NM and consists of three components:
the PRT (PLE (Page Location Entry) remapping table), the
hotness tracker, and the page occupied bit vector. The metadata
is only a few megabytes in size (detailed in section IV-B),
which is negligible compared to the NM size. An on-chip
SRAM buffer of a few kilobytes is employed in HMMC to
cache frequently utilized metadata (detailed in section III-H).
For each LLC miss memory request, the PRT is responsible for
querying the actual location of requested data, either in FM or
NM. The PRT records the information of remapped pages and
cached blocks, and provides the spatial locality information.
The hotness tracker keeps track of the most recently requested
hot pages to provide the temporal locality information and
monitors the memory footprint, determining the migration and
caching logic in Phoenix. The occupied information for all
memory pages is recorded in the page occupied bit vector.
To lower the miss rate of the metadata buffer in HMMC, a
metadata prefetcher prefetches metadata from NM to HMMC
asynchronous to memory access requests. Similar to previous
works [2]–[14], [19]–[25], data movement between NM and
FM is executed through a data movement module. The data
movement module records the pages being migrated. For data
movement from one memory location A to another location B,
Phoenix first reads data from A to the data movement module

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

5

Processor cores and private caches
Shared LLC

Hybrid Memory Management Controller (HMMC)

Processor package

Crossbar interconnect

cNMmNM
Flat address space

Data movement module

PLE remapping table buffer Hotness tracker buffer
Metadata buffer

Metadata
(PLE remapping table,

Hotness tracker,
Page occupied bit vector)

FM NM

Metadata prefetcher

Page occupied bit vector buffer

Fig. 3. System overview.

and then writes to B. For a regular request requesting for
a page being migrated, the request retrieves the needed data
from the data movement module and returns it to applications.
The request does not need to access memory. By using the
HMMC, NM is logically, not physically, partitioned into cNM
and mNM.

For high memory footprint condition, in order to provide
more OS-visible memory and reduce page faults, part of cNM
may be compelled to become mNM. The remaining NM can
still serve as cNM. For low memory footprint condition, since
the data migration granularity of mNM (page size) is larger
than the fetching granularity of cNM (block size), data with
strong spatial locality is preferred to be placed into mNM. This
approach can ensure the hit rate of NM, better utilize all the
memory bandwidth, and lower the metadata query overhead
for blocks. cNM is better suited to pages with weak spatial
locality. Only hot blocks are cached in cNM to reduce over-
fetching. In this way, the entire NM except for the space of
metadata, is not only visible as a flat address space for OS,
but also can flexibly serve as cNM or mNM most of the time
to match different workloads’ memory access patterns.

B. Memory space layout and metadata

Since cNM can be flexibly switched to mNM, all the FM
and NM except for the space of metadata, are visible as a flat
address space for OS, as shown in Figure 3. The mode switch
does not affect the physical memory visible to the OS. The
space of cNM and mNM in Phoenix is multiplexed. The mode
switch (detailed in section III-F) between cNM and mNM only
modifies the metadata buffer in HMMC and requires moving
necessary data blocks.

For metadata management, direct remapping has a bad
performance [6], [23], [30], [31] due to poor flexibility,
uneven NM utilization, and frequent page swaps. Besides,
the hardware query overhead for a fully-associative remapping
table is unacceptable on chip [23], [32], [33]. Therefore, for
a balance between the hardware overhead and performance,
Phoenix adopts a unified set-associative mechanism to manage
metadata both for caching and migration, as Figure 4 illus-
trates. An FM page is only allowed to be cached or migrated
to another NM page location in the same remapping set.
PLE remapping table (PRT). As shown in Figure 4(a), in
each remapping set, the set-associative PRT holds the original
PLEs for tracked FM pages, the remapped PLEs for all NM
pages and tracked FM pages, and BLEs (Block Location

FMNM

…

mNM pageFM page cNM pageEmpty page

[0] [i] [m-1] [m] [k] [m+n-1]

PLE remapping table (PRT)

…
[0] [i] [m-1] [m] [j] [m+p-1]

1 1 1 0valid bit vector
1 0 1 0dirty bit vector

Mode
bit

1 1 1 0
1 0 1 0

-1 k -1 i
…

m-1

…

(a) The PRT structure. Remapped PLE: the page’s actual location in the remapping
set (-1: the page has not been allocated). In each remapping set, PRT tracks the
migration and caching information of m NM pages and p FM pages.

(b) Data movement examples in a remapping set indicated by arrows. Each
remapping set includes m NM pages and n FM pages.

Original PLE:

…
…

… …

0
Original PLE m k m+n-1

PRT index:

Remapped PLE
BLE

Fig. 4. An example of the unified set-associative mechanism for caching and
migration. The data movement indicated by arrows in (b) corresponds to the
values of PRT in (a).

Entry) for all NM pages. To limit the metadata size in PRT, in
each remapping set, Phoenix tracks the migration and caching
trajectories of a few memory pages: all NM pages along
with some hot FM pages (e.g., m NM and p FM pages in
Figure 4(a)). Only these NM and FM pages tracked by PRT
are permitted to be remapped to another memory space. Note
that if the tracked FM pages become cold during runtime,
they are replaceable by other hot FM pages. The original PLE
refers to the original page index (i.e., offset from the first
page in this set, as shown in Figure 4(b)) in the remapping set,
decided by the OS memory allocator and the virtual to physical
address mapping mechanism in OS. Since all NM pages are
tracked by PRT all the time while the tracked FM pages
are changeable during runtime, PRT only records the original
PLEs for tracked FM pages. The remapped PLE combines
the functions of page address remapping and page allocation
(-1: the page has not been allocated). For example, the blue
arrow in Figure 4(b) indicates a swap between the ith and kth
pages in the remapping set, recorded by the corresponding ith
and jth PRT entries. The green arrow and red arrow represent
page caching and migration, respectively. One PLE requires
less storage space (⌈log2 (m+ n)⌉ bits, where m and n are
the numbers of NM pages and FM pages in a remapping set
respectively) than a traditional tag or pointer (a few bytes).

Since each NM page can serve as either cNM or mNM,
Phoenix utilizes a BLE to indicate the mode of an NM page
as well as the valid and dirty information of blocks in the NM
page. One BLE contains a mode bit, a valid bit vector, and a
dirty bit vector, as Figure 4(a) shows. The mode bit denotes
whether the NM page is in cache mode or memory mode. For
a cNM page, the corresponding BLE indicates if the cached
blocks are valid and dirty. For an mNM page, the valid bit
vector records all accessed blocks in the page for evaluating
the spatial locality.
Page occupied bit vector. The page occupied bit vector
records the occupied information for all memory pages in each
remapping set. An occupied bit indicates if the memory page
space has been occupied, queried by the page allocation and
data movement process.
Hotness tracker. In each remapping set, the hotness tracker
includes a hot table and five parameters: the NM occupied

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

6

Page f1
counter

…

Hot table queue for FM pages

FM pages
popped out

NM pages
popped out Hot table queue for NM pages

NM pages
pushed inPage fi

counter
Page n1
counter

… Page nj
counter

FM pages pushed in

Fig. 5. The hot table in a remapping set.

Look up PRT

④ Hit③ Miss

Look up BLE

Update
metadata

Forward
request to FM

Forward request to
original memory address

⑤ In FM

⑥ In NM

⑧ In cache mode

⑦ In memory
mode

Forward
request to mNM

⑨ block cached

⑩ block not
cached

Make data
movement decision

LLC miss request

Look up metadata buffer

Fetch metadata from NM to metadata buffer① Hit

② Miss

Forward
request to FM

Forward
request to cNM

Prefetch metadata

Fig. 6. Memory access flow. Operations within the black boxes are on the
critical path. Operations within the red boxes are asynchronous to memory
accesses for LLC miss requests.

ratio (Rh), a hotness threshold (T) to decide if an FM page
should be brought in NM for high Rh condition, the number
of cNM pages (Nc), and the number of mNM pages in which
most blocks have/have not been accessed (Na/Nn). To reduce
the metadata storage overhead and get the temporal locality
information, the hot table only monitors the hottest pages,
including all NM pages and the recently accessed FM pages.
The hot table includes two queues with LRU replacement
strategy, one for NM pages and the other for FM pages, as
shown in Figure 5. Each entry in the queue serves as a counter
to record the access number for a page before popped out
from the queue. When a memory request accesses a page, the
counter for the page is incremented by one. Recently requested
page entries are pushed back into the queue, and page entries
that have not been accessed for a long time are popped out of
the queue. Therefore, the hot table can always identify recently
requested hottest pages during runtime. The popped-out NM
page entries are pushed back into the FM queue and incur page
evictions from NM to FM. The five parameters are used for
making data movement decisions and detailed in section III-F.

C. Memory access flow

Figure 6 illustrates the memory access flow. Using the
requested memory address, the LLC miss request first checks
if the required metadata has been cached in the metadata buffer
in HMMC. For a metadata buffer hit (1), Phoenix looks up
the PRT buffer to determine the actual memory address for
the requested data. For a metadata buffer miss (2), Phoenix
fetches the required metadata from NM to the metadata buffer
and asynchronously prefetches metadata that might be utilized
later. After looking up the PRT, a PRT miss (3) indicates
that the requested page is not remapped to other memory
space, and the LLC miss request directly accesses the original
requested memory address. In the case of a PRT hit (4), the
target page may be remapped to FM (5) or NM (6). For 5 ,

Memory access logic
Address register

-
ADQ entry
popped out…

Address difference queue (ADQ)
Address

difference
Address

difference
Counter Counter

Metadata prefetching logic
LLC miss request

Metadata buffer miss

Metadata buffer hit

ADQ entry
pushed in

Fig. 7. Metadata prefetching mechanism.

the memory request goes to FM. For 6 , HMMC checks the
BLE if the NM page is in memory mode (7) or cache mode
(8). If the page is in memory mode, the memory request
directly goes to mNM. If the page is in cache mode, HMMC
further checks the valid bit vector to determine whether the
target block is cached. For block cached (9), the requested
data is in cNM. For block not cached (10), the memory request
goes to FM. All memory accesses update the corresponding
metadata and may incur data movement asynchronously.

D. Page allocation process

Few previous studies discuss the page allocation process.
However, simply allocating pages to FM or NM for all
workloads by the OS memory allocator does not fully exploit
the benefits of combining hybrid memory technologies. A
suitable page allocation mechanism can reduce the migration
cost for hot pages migrated from FM to NM and cold
pages evicted from NM to FM. Since the PRT records the
remapping information of all NM pages and the page occupied
information of all memory pages, the pages whose original
PLEs are within the NM address range could be allocated
to any free memory space in a remapping set. Based on the
observation that adjacent allocation requests intend to have
similar memory access patterns [24], [39]–[41], a hotness-
based remapping allocation mechanism is applied to Phoenix.
If the recently allocated pages still reside in the hot table
queue for NM pages, the page is allocated in NM. Otherwise,
Phoenix allocates the page in FM.

E. Metadata prefetching

Since metadata for managing the hybrid memory system
is placed in NM and cached in an on-chip SRAM, Phoenix
incorporates a lightweight metadata prefetcher to improve the
hit rate of the metadata cache and lower the metadata access
latency on the critical path, as shown in Figure 7. A recent
work [42] reports that the address difference between two con-
secutive memory accesses is effective for metadata prefetch-
ing. For each memory access through HMMC, Phoenix em-
ploys a 64-bit address register to record the requested memory
address. The address difference is calculated by:

Daddr = |Addrlast −Addrcurr| (1)

where Daddr is the address difference between two con-
secutive memory accesses, Addrlast is the last requested
memory address recorded in the register, and Addrcurr is the
currently requested memory address. An address difference
queue (ADQ) keeps the recently generated address differences

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

7

along with their respective counts. Each address difference
entry (ADE) in the ADQ includes an address difference
(8 bytes) and a counter (1 byte). Every time an address
difference is calculated, the counter of the corresponding ADE
is incremented by one. If the address difference is not in the
ADQ, it is pushed into the ADQ and its counter value is set
to one. ADQ entries unused for a long time are evicted from
the ADQ to catch the changes in memory access patterns.
For a metadata miss in HMMC whose page address is Addr,
Phoenix prefetches the metadata in ranges of Addr ± Raddr

(Raddr is the prefetching range), Addr+Daddr ±Raddr, and
Addr−Daddr±Raddr, asynchronous to memory access logic.

F. Data movement decision

In this section, Phoenix makes the data movement decision
based on the temporal and spatial locality features of different
memory access patterns and the system memory footprint to
support flexible cNM and mNM capacities, lower the over-
fetching risk, maximize the OS-visible memory capacity, and
remove the eviction latency of cNM pages from the critical
path in the case of memory shortage. Memory accesses bring
changes to the hotness tracker and as a result, incur data move-
ment. Besides, for high memory footprint, data movement is
triggered to meet OS memory requirements.

For spatial locality, the BLE tracks the accessed blocks in
both cNM and mNM pages. If more than 1

2 of all blocks in
a page have been fetched into cNM, that means the page has
a strong spatial locality and should be switched to an mNM
page. More requested pages should be migrated to mNM if
most NM pages have strong spatial locality. mNM pages are
switched from cNM pages (most blocks in the page have been
accessed) or migrated from FM (not sure if most blocks in
the page have been accessed). Thus, mNM pages with a high
access ratio reflect a strong spatial locality degree, while those
with a low access ratio and the remaining cNM pages reflect a
weak spatial locality degree. The spatial locality degree (SL)
in a remapping set is evaluated by:

SL = Na −Nn −Nc (2)

For SL>0 (strong spatial locality), more hot data should be
brought in mNM to better exploit the spatial locality and utilize
the memory bandwidth. For SL ≤ 0 (weak spatial locality),
hot data should be cached in cNM to reduce over-fetching.

For temporal locality, Phoenix uses the hot table to track
hot and recently accessed pages. It is hard to benefit from
bringing data with low access frequency into NM, which
wastes memory bandwidth and may cause frequent hot page
evictions for high NM footprint condition, resulting in perfor-
mance degradation. The threshold T in the hotness tracker can
alleviate this issue. If Rh is high, for SL>0, only pages whose
hotness value is larger than T are permitted to be migrated to
mNM, and for SL ≤ 0, only blocks in a page whose hotness
value is larger than T are permitted to be cached in cNM.
In this way, for weak temporal locality workloads, a large
amount of data with low access frequency is not brought into
NM, which reduces the data movement overhead and eviction
frequency of hot pages and better utilizes the FM bandwidth.

FM

cNMmNM

(1) ❶, (1) ❷ (1) ❸, (1) ❹

(2)

(1), (3) ❶, (4)

(2) ❶

(2) ❷, (3) ❷

(a) Data caching and migration. (b) Data eviction.

FM

mNM cNM

Fig. 8. Data caching, migration, and eviction.

For strong temporal locality workloads, despite some hot data
that may benefit from caching and migration not brought in
NM, the eviction frequency of those hottest pages is reduced
to make them serve more memory requests before eviction.
The FM bandwidth is better utilized, and the data movement
overhead is mitigated.

Based on the above analysis to better exploit both tempo-
ral and spatial locality benefits for different memory access
patterns, the data caching and migration from FM to NM are
shown as follows.
Data caching and migration from FM to NM. Data

caching and migration are triggered by the conditions shown
in Figure 8(a) and detailed as follows. (1) For accessing an
FM page, ❶ if SL>0 with a low Rh, the page is migrated
to mNM due to the strong spatial locality. ❷ If SL>0 with
a high Rh, the page is migrated to mNM only if its hotness
value is larger than T . ❸ If SL ≤ 0 with a low Rh, the page
is cached to cNM and only the requested block is fetched. ❹
If SL ≤ 0 with a high Rh, the page is cached to cNM only
if its hotness value is larger than T . (2) For accessing a cNM
cached page, if the target block is not cached in cNM, Phoenix
caches the block. If most blocks in the page have been cached,
the cNM page turns into an mNM page. Since the cNM and
mNM space is multiplexed in Phoenix, only blocks not cached
are fetched from FM, minimizing the data movement overhead
for the mode switch.

Data eviction from NM to FM, aimed at providing more
free NM space, evicting zombie pages in NM, and removing
the eviction latency of cNM pages from the critical path in
the case of memory shortage, is detailed below.
Data eviction from NM to FM. Data eviction from NM to
FM is triggered by the conditions shown in Figure 8(b) and
detailed as follows. (1) If a cNM page entry is popped out
from the hot table queue for NM pages, dirty blocks in the
corresponding cNM page are evicted to FM. (2) Since evicting
an mNM page to FM consumes much higher bandwidth (at
least 2x) than a cNM page, ❶ if there is a free FM page in
the remapping set, mNM pages to be evicted have one more
chance to reside in NM. The mNM page to be evicted from
the hot table queue is switched to cNM mode without data
migrated to FM. A free FM page is marked as occupied and all
blocks in the mNM page are marked as dirty. The mode switch
from mNM to cNM is designed as a buffering mechanism
for increasing colder pages in mNM, aiming to lower the
migration cost resulting from hotness fluctuations and extend
the residency in NM to serve more memory requests. There
is no data movement cost for mNM switched to cNM due to
our multiplexed space design. In this way, if these pages then
become hotter, no data movement is required. ❷ If there is no
free FM page in the remapping set, mNM pages to be popped
from the hot table queue are swapped with FM pages to be
migrated to NM. (3) For high Rh, in case of both the head

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

8

A B C D ESET i A B FRemapped PLE

PRT mNM FM

C B A D E F

C D A B E F

G H

G H

G H

Slow swap

C E A B D F

CBuffer A F

F E C B D A

CBuffer A F

Page read

Page write

Step 4.1

Step 4.2

Initial state

Step 1

Step 2

G H

G H

F A C B D E G H

Step 4

Fast swapStep 5

-1Original PLE

C E A B D F G HStep 3

Fast swap

-1 -1
-1 -1 -1

SET i C BRemapped PLE
COriginal PLE -1 -1
A -1 -1

SET i C DRemapped PLE
COriginal PLE D -1
A B -1

SET i C DRemapped PLE
COriginal PLE D E
A E B

SET i F DRemapped PLE
FOriginal PLE D E
A E B

SET i B DRemapped PLE
FOriginal PLE D E
A E F

Fig. 9. Fast&slow swap.

page in the hot table queue for NM pages and its counter value
remain unchanged over a long time, the page (zombie page)
should be evicted to FM since there is no other page able to
evict the zombie page from NM. ❶ If the zombie page is a
cNM page, dirty blocks in the cNM page are flushed to FM. ❷
If the zombie page is an mNM page, the mNM page is evicted
from NM to FM. (4) If the system memory footprint is high in
general (i.e., the memory address in LLC miss request is larger
than the FM capacity), cNM pages in multiple remapping sets
are flushed to FM. This batching mechanism provides more
OS-visible memory to reduce page faults. For pages to be
allocated in these remapping sets later, there is no need to
wait for the eviction from cNM to make free page space, which
removes the eviction latency from the critical path. In these
remapping sets, all NM is not permitted to be used as cNM
until the OS memory footprint drops.

To sum up, the migration and caching mechanism in
Phoenix addresses the limitations of state-of-the-art hybrid
mode designs for different kinds of workloads in Figure 2.
For workloads with strong spatial and strong temporal locality,
most NM is used as mNM for better spatial locality and mem-
ory bandwidth efficiency without over-fetching. For workloads
with strong spatial and weak temporal locality, most NM is
used as mNM with a non-aggressive migration scheme to bet-
ter utilize all the memory bandwidth and exploit spatial local-
ity benefits. Data with a low access frequency does not bring
significant memory bandwidth waste and frequent evictions.
For workloads with weak spatial and strong temporal locality,
most NM is used as cNM to better exploit the temporal locality
benefit and reduce over-fetching. Compared to the fixed cNM
capacity in existing hybrid mode designs, more cNM capacity
contributes to a lower eviction frequency for data in cNM.
For workloads with weak spatial and weak temporal locality,
few data are moved. Several optimizations, such as advanced
footprint caching [14], [19] and software-assisted metadata
management [2], [13], are directly applicable to Phoenix.
However, such options are orthogonal to our contributions
and require modifications to existing operating systems and
software. We do not include them in our base design to clearly
attribute the performance gains to our proposed techniques.

G. Fast&slow swap

For data swap between FM and mNM in section III-F,
Phoenix adopts a fast&slow swap mechanism to combine the
advantages of fast swap (high swap efficiency) and slow swap
(low metadata overhead for data remapping). Considering the
locality in memory access patterns exhibited by the operating
system, wherein the OS tends to access memory within a
specific address range over a period [50]–[52], the majority
of memory pages remain inactive. Consequently, only a small
portion of memory pages are potentially subject to remapping
during a period of workload execution. In each remapping
set, the PRT tracks the migration trajectories of all NM pages
and a few FM pages, rather than tracking all FM pages or
none of the FM pages. For data swap between two pages
whose migration trajectories have been both recorded in PRT,
Phoenix performs fast swap and updates the remapped PLEs
in PRT. Otherwise, Phoenix performs slow swap and page
entry replacement in PRT. Figure 9 gives an example of
the fast&slow swap mechanism, where each remapping set
includes two NM pages and six FM pages. The PRT tracks the
migration trajectories of two NM pages and three FM pages.
Phoenix performs fast swap until there is no free remapped
page entry in PRT in step 1, step 2, and step 3. In step 4,
page F whose migration trajectory has not been recorded in
PRT, is swapped with page C. Phoenix performs slow swap to
ensure that the evicted page C returns to its original position
in FM. In step 5, the migration trajectories of both page A and
page E have been recorded in PRT. The two pages are directly
swapped through the fast swap approach. In section IV-B, we
evaluate the performance of Phoenix with different numbers
of tracked remapped FM pages.

H. Hardware Cost

Phoenix is a hardware-based design with core components
and processing logic integrated into the on-chip HMMC. Com-
pared to software-managed schemes, hardware design provides
faster address translation. The processing logic of Phoenix
can also be implemented in hardware without software or
OS interference. The hardware cost of Phoenix comes from
the on-chip capacity requirement and peripheral logic circuits.
The processing logic of HMMC mainly includes the address
resolution by querying the metadata buffer, the mode switch
between cNM and mNM by updating the metadata buffer,
and a few simple logic for data movement and metadata
prefetching, which is negligible compared to the on-chip
capacity overhead. The on-chip capacity of HMMC (evaluated
in section IV-B) consists of (1) 1320B PRT buffer (PLE: 640
entries, each entry is 10 bits in size; mode bit: 64 entries, each
entry is 1 bit in size; valid bit vector: 64 entries, each entry is
4B in size; dirty bit vector: 64 entries, each entry is 4B in size);
(2) 512B page occupied bit vector (4096 entries, each entry is
1 bit in size); (3) 216B hotness tracker buffer (hot table: 192
entries, each entry is 1B in size; parameters: 8 entries, each
entry is 3B in size); (4) 144B metadata prefetcher (16 entries,
each entry is 9B in size); and (5) 16KB+32B data movement
buffer (four 4KB-sized pages with their corresponding 8B-
sized starting physical addresses). The total on-chip capacity

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

9

Table III. System configuration.

Processor parameters [25]
Cores ARM A72(AArch64), 3.6GHz, 24 cores
IL1/DL1 cache private 64 KB per core, 4-way, LRU
L2 Cache private 256 KB per core, 8-way, SRRIP
L3 Cache shared 8 MB, 16-way, DRRIP

DRAM-PM parameters [14], [24]

DDR3 2000 512 MB, 1 64-bit channels, 8 banks,
tCAS-tRCD-tRAS-tRP: 11-10-24-10

PCM 32 GB, 1 64-bit channels, 8 banks,
tCAS-tRCD-tRAS-tRP: 11-58-80-11

Local-remote memory parameters [46], [55], [56]

DDR4 3200 512 MB, 1 64-bit channels, 8 banks,
tCAS-tRCD-tRAS-tRP: 22-22-38-22

DDR4 3200 32 GB, 1 64-bit channels, 8 banks,
tCAS-tRCD-tRAS-tRP: 22-22-38-22

Average CXL
round-trip latency 100 ns

HBM-DRAM parameters [34], [35]

HBM2 512 MB, 8 128-bit channels, 8 banks,
tCAS-tRCD-tRAS-tRP: 7-7-17-7

DDR4 3200 32 GB, 1 64-bit channels, 8 banks,
tCAS-tRCD-tRAS-tRP: 22-22-38-22

Table IV. Benchmark characteristics (BM: Benchmark, MPKI: LLC Misses
per Kilo Instructions, FP: Footprint).

BM MPKI FP(GB) BM MPKI FP(GB)

High
MPKI

mcf 51.2 32.3 cloverleaf 29.9 31.7
Stream 35.1 32.4 bwaves 27.3 31.9
roms 32.7 31.9 xalancbmk 22.1 28.2
lbm 30.8 32.3

Medium
MPKI

cam4 18.9 32.2 hpccg 11.7 29.5
wrf 17.5 27.4 fotonik3d 11.1 28.2

cactuBSSN 14.3 32.1 x264 10.2 22.3
xz 14.1 32.0

Low
MPKI

namd 8.3 31.3 SP 1.1 28.6
leela 5.6 23.6 comd 0.9 30.2

miniAMR 3.6 32.4 miniFE 0.8 32.1
nab 2.9 31.8 miniGhost 0.5 29.8

required by Phoenix is only about 18KB+176B (2KB meta-
data buffer, 144B metadata prefetcher and 16KB+32B data
movement buffer). Compared to hundreds of kilobytes of on-
chip metadata buffer in previous works [14], [23], [24], the
hardware cost of Phoenix is significantly reduced.

IV. EVALUATION

A. Experimental setup

We use the gem5 simulator [61] and DRAMSim2 [62]
to model Phoenix and other control schemes. We compare
Phoenix against a baseline configuration and nine state-of-the-
art designs:

• A baseline system without NM: BASE.
• Two hybrid mode designs: Hybrid2 [23] and Baryon [24].
• Three memory mode designs: Chameleon [2], AGDM [5],

and RHPM [6].
• Four cache mode designs: Banshee [22], Alloy Cache

(AC) [11], Unison Cache (UC) [21], and NOMAD [13].
In order to evaluate the effectiveness of our proposed

Phoenix design comprehensively, we implement all systems
in three different hybrid NM and FM architectures (DRAM-
PM, local-remote memory connected with CXL, and HBM-
DRAM) as shown in Table III. Page faults in our system are
assumed to be serviced by a solid-state disk with a latency
of 36 microseconds (100K cycles) [2], [54]. Since state-of-
the-art designs achieve the best performance under different

on-chip metadata sizes ranging from several kilobytes to 512
kilobytes, for a fair comparison among all evaluated designs,
we allow 512KB on-chip SRAM in the memory controller to
buffer requested metadata and the rest unused SRAM to buffer
frequently requested data.

The configurations for Phoenix are shown as follows. Both
cNM and mNM are managed with 8-way associativity. In
each remapping set, the hot table monitors sixteen recently
accessed FM pages for a balance between the metadata
overhead and data migration efficiency. We set T as the
smallest hotness value of NM pages in each remapping set
to dynamically match the data hotness pattern during runtime.
The Rh is defined as high if its value reaches 1 to maximize
the NM utilization rate. The ADQ size is set to 16, which
is effective for metadata prefetching in Phoenix and does
not incur excessive overhead. For metadata prefetching, the
prefetching range Raddr is set to 8KB, where more than 95%
of requested metadata is prefetched from NM to HMMC in
our experiments. We use the SPEC2017 [60], Mantevo [53],
NAS [37], and Stream [38] benchmarks in Table IV to evaluate
our design. We simulate a minimum of 24 billion instructions
for each benchmark by using the Simpoint [59].

B. Design space exploration and metadata overhead.

Phoenix can be configured with any block and page size,
which affects the system performance and metadata size. We
explore some possible page size (ranging from 2KB to 16KB)
and block size (ranging from 64B to 512B) configurations
in the three hybrid memory systems, and their performance
results are shown in Figure 10. We use the average normalized
Instruction Per Cycle (IPC) for all benchmarks in Table IV
during execution as a performance metric for the speedup
comparison. Smaller blocks miss the opportunity to exploit
spatial locality while larger blocks cause over-fetching. Thus,
a block of 128B is a good compromise between the spatial
locality exploitation and bandwidth consumption. For the same
block size, 4KB pages demonstrate the best performance
among evaluated page size configurations. Our design achieves
the best performance at 128B blocks and 4KB pages, and for
the rest of experiments in this paper, we present our results in
this configuration.

Figure 11 illustrates the performance of Phoenix with dif-
ferent ratios of FM pages tracked by PRT. It’s predictable
that Phoenix achieves the highest IPC by tracking all FM
pages (the ratio = 1) and the lowest IPC by tracking none
of the FM pages (the ratio = 0), due to the performance
gap between the fast swap and slow swap. The metadata
overhead is proportional to the number of tracked FM pages.
However, the system’s performance gradually increases with
the enlargement of the ratio and tends to saturate. Only a small
portion of memory pages are potentially subject to remapping
during a period of workload’s running time. In the three hybrid
memory systems, the IPC achieved by tracking 1

16 of all FM
pages is, on average, 97.2% of that by tracking all FM pages.
Therefore, in each remapping set, Phoenix tracks the caching
and migration trajectories of 1

16 of all FM pages, considering
both performance and metadata overhead. The total metadata

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

10

0
1.0
2.0

G
eo

m
ea

n
IP

C

sp
ee

du
p 3.0

512-16K 256-16K
block-page size (Bytes)

128-16K 64-16K 512-8K 256-8K 128-8K 64-8K 512-4K 256-4K 128-4K 64-4K 512-2K 256-2K 128-2K 64-2K

DRAM-PM Local-Remote memory HBM-DRAM

Fig. 10. Geometric mean of the IPC speedup for Phoenix with different block and page sizes, normalized to BASE, in the three hybrid memory systems.

The ratio of FM pages tracked by PRT

(a) DRAM-PM hybrid memory system (b) Local-remote hybrid memory system

The ratio of FM pages tracked by PRT
(c) HBM-DRAM hybrid memory system

The ratio of FM pages tracked by PRT
1/21/41/81/161/320 1 1/21/41/81/161/320 11/21/41/81/161/320 1

0

G
eo

m
ea

n
IP

C
sp

ee
du

p

0.5
1.0
1.5

0

G
eo

m
ea

n
IP

C
sp

ee
du

p

0.5
1.0
1.5

0

G
eo

m
ea

n
IP

C
sp

ee
du

p

0.5
1.0
1.5

Fig. 11. Geometric mean of the IPC speedup for Phoenix with different ratios of FM pages tracked by PRT, normalized to that for Phoenix with none of the
FM pages tracked by PRT, in the three hybrid memory systems.

64B 128B 256B 512B 1024B 2048B 4096B
0

0.2
0.4
0.6
0.8
1
Low_MPKI Medium_MPKI High_MPKI All

G
eo

m
ea

n
m

et
ad

at
a

bu
ffe

r h
it

ra
te

Metadata buffer capacity

Fig. 12. Geometric mean of the metadata buffer hit rate for Phoenix with
different metadata buffer capacities in HMMC.

storage space in NM (3960KB: 2496KB PRT, 1040KB page
occupied bit vector, and 424KB hotness tracker) is reduced by
1∼2 orders of magnitude compared to prior designs.

Figure 12 demonstrates the geometric mean of the metadata
buffer hit rate over different metadata buffer capacities in
HMMC. When the capacity is larger than 2KB, the metadata
buffer hit rate is close to 1. Phoenix sets the default metadata
buffer capacity as 2KB, where the metadata buffer has an
average hit rate of 96.5% without incurring much hardware
cost in HMMC.

Figure 13 gives the sensitivity results for different variables
in Phoenix running on the DRAM-PM hybrid memory system.
In Figure 13(a), with the increasing number of monitored FM
pages in each remapping set, Phoenix achieves higher IPC
speedup and tends to saturate. More monitored FM pages
in the hot table enable Phoenix to catch hotness changes of
more recently requested pages. The metadata overhead for
hotness monitoring is proportional to the number of monitored
FM pages, while the system’s performance tends to saturate.
Monitoring sixteen FM pages in each remapping set reduces
the metadata overhead without degrading performance. Fig-
ure 13(b) illustrates the performance of Phoenix with different
values of Rh defined as high. As described in Section III-F,
if the Rh value in a remapping set is low, requested FM
pages are directly cached/migrated to NM. If the Rh value
in a remapping set is high, only requested FM pages whose
hotness value is larger than T are cached/migrated to NM.
With the increasing value of the Rh threshold defined as high,
more requested FM pages are brought to NM, contributing to a
higher NM utilization rate and more performance benefits. The
performance of Phoenix with different ADQ sizes and Raddr

values is shown in Figure 13(c) and Figure 13(d), respectively.
Larger ADQ size and Raddr value imrpove the metadata buffer
hit rate. The performance tends to saturate when the ADQ size

is larger than 12. Prefetching 8KB Raddr ranges contributes
to a 97.8% metadata buffer hit rate. We evaluate Phoenix’s
performance with different T values in Figure 13(e). Phoenix
has a bad performance with a fixed threshold of 0. Not only
can the fixed threshold not dynamically match the data hotness
pattern during runtime, but it also consumes a significant
amount of bandwidth for data movement. Hmin (the minimum
hotness value of NM pages in each remapping set) achieves
higher IPC speedup than Havg (the average hotness value of
NM pages in each remapping set) and Hmax (the maximum
hotness value of NM pages in each remapping set). The reason
is that a higher T value prevents a large number of requested
FM pages from being brought into NM, contributing to fewer
memory requests served by NM.

C. Performance breakdown

Figure 14 illustrates the geometric mean of the IPC speedup
for all benchmarks in Table IV to show the effect of our pro-
posed optimizations. The performance speedup of Phoenix can
be attributed to the cNM and mNM combination, the dynam-
ically adjustable cNM and mNM capacities, the multiplexed
cNM and mNM space, the metadata buffer in HMMC, the
page allocation mechanism, and the metadata prefetcher. Each
of these optimizations contributes to 22.7%, 21.4%, 13.9%,
18.1%, 8.8%, and 15.1% of Phoenix’s overall performance
gain, respectively. Each entry on the x-axis represents Phoenix
removing one of our proposed optimizations. From left to
right: C-Only and M-Only represent all the NM used as
cNM and mNM, respectively. The more benefits achieved by
M-Only than C-Only mainly stem from the better memory
bandwidth efficiency for NM and FM and more OS available
memory space. We also evaluate the performance of fixing the
cNM capacity at 50% of total NM capacity (50%-C), which
outperforms the single-mode designs. Dynamically adjustable
cNM and mNM capacity design (Dyna-C-M) better exploits
temporal and spatial locality benefits for different memory
access patterns and outperforms fixed cNM and mNM capacity
designs. A hybrid mode design without the multiplexed cNM
and mNM space (No-Multi) brings more data movement over-
head for mode switch, wasting both NM and FM bandwidth.
Placing all the metadata in NM without the metadata buffer
in HMMC (Meta-N) degrades the performance mainly due to

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

11

0G
eo

m
ea

n
IP

C

sp
ee

du
p

1.0
1.5

2.5
2.0

0.5

0 4 8 12 16 20

ADQ size

(c) IPC speedup for Phoenix with
different ADQ sizes, normalized to
BASE.

4 8 12 16 20
Number of monitored FM

pages in each remapping set
(a) IPC speedup for Phoenix with
different numbers of monitored
FM pages, normalized to BASE.

0G
eo

m
ea

n
IP

C

sp
ee

du
p

1.0
1.5

2.5
2.0

0.5

G
eo

m
ea

n
m

et
ad

at
a

bu
ffe

r h
it

ra
te

Value of Raddr (Bytes)

8K4K2K1K0

(d) Metadata buffer hit rate for
Phoenix with different values of
Raddr, normalized to BASE.

0

0.4
0.6

1.0
0.8

0.2

Value of Rh

0 0.2 0.4 0.6 0.8 1.0

(b) IPC speedup for Phoenix with
different values of Rh defined as
high, normalized to BASE.

0G
eo

m
ea

n
IP

C

sp
ee

du
p

1.0
1.5

2.5
2.0

0.5

0 Hmin Havg Hmax

Value of T

(e) IPC speedup for Phoenix
with different values of T,
normalized to BASE.

0G
eo

m
ea

n
IP

C

sp
ee

du
p

1.0
1.5

2.5
2.0

0.5

Fig. 13. Sensitivity analysis for different variables in Phoenix running on the DRAM-PM hybrid memory system.

0
0.5
1.0
1.5
2.0

G
eo

m
ea

n
IP

C

sp
ee

du
p 2.5

C-Only M-Only 50%-C Dyna-C-M No-Pre PhoenixAlloc-NAlloc-FNo-Multi Meta-N

DRAM-PM Local-Remote memory HBM-DRAM

Fig. 14. Performance factors breakdown, normalized to BASE, in the three
hybrid memory systems.

the performance gap between SRAM and NM as well as more
NM traffic. Alloc-F and Alloc-N represent allocating all pages
to FM and NM, respectively. Compared to our hotness-based
page remapping allocation, Alloc-F consumes more bandwidth
for hot data migration from FM to NM. Alloc-N reduces the
migration cost for workloads with low memory footprint since
all the data can be placed in NM while incurs significant
bandwidth waste for high memory footprint workloads due
to a large amount of data evicted from NM. Removing the
metadata prefetcher from Phoenix (No-Pre) incurs a lower
metadata buffer hit rate and higher metadata miss latency on
the critical path.

D. Performance comparisons

Figure 15, Figure 16, and Figure 17 illustrate the per-
formance of Phoenix and state-of-the-art designs for high,
medium, low and all MPKI benchmarks in the three hy-
brid memory systems respectively: Phoenix outperforms the
best previous designs by 27.1%, 20.5%, 8.4% and 18.2%
on average in each benchmark suit. Phoenix has the best
performance on all the 22 benchmarks in Table IV. Compared
to the two hybrid mode designs Hybrid2 and Baryon, Phoenix
makes better use of NM for locality exploration due to the
adjustable capacities for cNM and mNM. Besides, since the
metadata storage space is greatly minimized and the cNM
and mNM space is multiplexed, Phoenix provides more NM
space for workloads and consumes less memory bandwidth
for mode switch between cNM and mNM. Furthermore,
the dynamic mode switch design in Phoenix provides more
available memory for the OS and reduces page faults for
workloads with high memory footprint. Chameleon, RHPM,
and AGDM are designed based on POM [3] with the added
option to economize on migration bandwidth. They restrict
only one NM sector in each remapping set, which leads to
uneven NM utilization rates in different remapping sets and
frequent sector migration and eviction. Furthermore, RHPM
and AGDM adopt the slow swap mechanism for data migration
between FM and NM, consuming more memory bandwidth
to swap data between hybrid memories and degrading the
system performance. Cache designs fail to utilize the aggregate

memory bandwidth of both NM and FM. The high eviction fre-
quency for hot data in NM and more page faults caused by the
OS invisible NM space architecture give rise to a significant
amount of migration bandwidth and page fault latency, degrad-
ing the system performance. Moreover, state-of-the-art designs
do not consider both the spatial and temporal locality of the
running workloads, incurring unnecessary memory bandwidth
consumption and data fetching latency due to the over-fetching
issue and the inability to pre-migrate upcoming requested data
from FM to NM. Significant metadata storage overhead in
state-of-the-art designs reduces the available NM space for
running workloads, degrading the system performance as well.

E. Over-fetching analysis.

Over-fetching is a common issue that plagues modern
hybrid memory management designs and degrades system
performance. By collecting the percentage of data brought in
NM but unused, we analyze the over-fetching for Phoenix and
two state-of-the-art hybrid mode designs: 10.4% in Phoenix
(128B blocks and 4KB pages), 16.8% in Baryon (256B sub-
blocks, 2KB blocks, and 16KB super-blocks), and 18.5% in
Hybrid2 (256B blocks and 2KB pages). The reasons for the
over-fetching reduced by Phoenix are as follows: (1) The over-
fetching is mainly caused by workloads with weak spatial
locality. The adjustable design in Phoenix can provide more
cNM capacity (up to 512MB) than Hybrid2 (64MB) and
Baryon (64MB) for workloads with weak spatial locality,
which greatly reduces the eviction frequency in cNM and
enables blocks in cNM to serve more memory requests before
eviction. (2) Our data movement mechanism only permits
data in a page that reaches a certain hotness level (i.e., T)
to be brought in NM for high memory footprint condition,
which prevents pages with low hotness into NM and reduces
the eviction frequency of pages in NM. Hybrid2 and Baryon
bring all requested blocks into cNM, which causes significant
over-fetching for workloads with weak spatial locality. (3)
The buffering mechanism for mNM page eviction extends the
pages’ residency in NM, enabling data brought in NM to serve
more memory requests before eviction. (4) The granularity for
data caching and eviction in Phoenix is smaller than that in
Hybrid2 and Baryon, mitigating the over-fetching issue.

F. Memory traffic analysis

Figure 18(a) and Figure 18(b) illustrate the normalized
NM and FM traffic for each benchmark group, respectively.
Phoenix economizes memory bandwidth for both NM (12.7%
less traffic than the best, i.e., AGDM) and FM (9.3% less

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

12

G
eo

m
ea

n
IP

C
 s

pe
ed

up

mcf
Stre

am
roms lbm

clo
verleaf

bwaves

xalancbmk

Gomean_high

Gomean_medium

Gomean_low

Gomean_all

Banshee AC UC Chameleon Hybrid2 RHPM AGDM Baryon PhoenixNOMAD

cam4 wrf

cactu
BSSN xz

hpccg

fotonik3
d

x264
namd

leela

miniAMR nab SP
comd

miniFE

miniGhost
0
1
2
3

Fig. 15. Performance of Phoenix and state-of-the-art designs, normalized to BASE, in the DRAM-PM hybrid memory system. The benchmarks are sorted
by MPKI and the geometric mean of an MPKI class is presented at the right of the class.

0
1.0
2.0

G
eo

m
ea

n
IP

C

sp
ee

du
p 3.0

Banshee AC UC Chameleon Hybrid2
RHPM AGDM Baryon PhoenixNOMAD

MPKI
High Medium Low All

Fig. 16. Performance of Phoenix and state-of-the-art designs, normalized to
BASE, in the local-remote hybrid memory system.

MPKI
High Medium Low All

0
1.0
2.0

G
eo

m
ea

n
IP

C

sp
ee

du
p 3.0

Banshee AC UC Chameleon Hybrid2
RHPM AGDM Baryon PhoenixNOMAD

Fig. 17. Performance of Phoenix and state-of-the-art designs, normalized to
BASE, in the HBM-DRAM hybrid memory system.

traffic than the best, i.e., Banshee), which is one of the reasons
why Phoenix has the best performance. The two hybrid mode
designs, Hybrid2 and Baryon, both incur extra unnecessary
NM traffic for data migration from one space in NM to another
space in NM, which can be mitigated by the multiplexed
NM space design in Phoenix. The over-fetching issue results
in excessive NM and FM traffic as well. In general, cache
mode designs incur higher NM traffic and lower FM traffic
than memory mode designs. This is because cache mode
designs need to fetch all requested data from FM to NM while
memory mode designs only migrate data for future reuse.
RHPM and AGDM employ the slow swap mechanism for
data migration in hybrid memory systems, which generates
more data migration traffic. The memory traffic reduction in
Phoenix is mainly attributed to lowering the eviction frequency
for pages in cNM and mNM, preventing data with a low
access frequency into NM, alleviating the over-fetching risk,
and reducing the data movement overhead for mode switch
between cNM and mNM. Apart from the system performance
gains achieved by the memory traffic reduction, the write
durability issue [47], [48] for PM products in DRAM-PM
hybrid memory systems is alleviated as well.

V. RELATED WORK

In general, prior works can be divided into three categories:
utilizing NM in cache mode (cNM), memory mode (mNM),
and hybrid mode (both cNM and mNM).
NM in cache mode. Prior cNM designs aim to mitigate the
metadata overhead for data caching and enhance the hit rate of
cNM. Alloy Cache [11] utilizes a direct mapped design with
64-byte cache lines and eliminates the tag serialization delay
by streaming tag and data together in a single burst. A simple
and highly effective memory access predictor is employed to

service cache misses faster without waiting for a cache miss
detection. Unison Cache [21] is a page-based four-way set-
associative cache design with an LRU replacement policy that
uses a footprint predictor to improve the hit rate of cNM.
Moreover, it uses a way predictor to avoid the serialization
latency of tags and data accesses. Banshee [22] leverages OS
page tables and TLBs to locate data in cNM and proposes
a bandwidth-aware replacement policy to balance bandwidth
utilization. Information of recently inserted or replaced pages
in cNM is cached in an added SRAM structure called Tag
Buffer. NOMAD [13] utilizes OS page tables and TLBs to
manage tags and added hardware to perform data caching.
By decoupling the tag and data management, on a DC miss,
the OS updates a tag and immediately resumes an application
thread without waiting for the cache fill to complete. Instead,
the added hardware handles the cache fill without blocking the
application thread.
NM in memory mode. State-of-the-art mNM designs intend to
mitigate the metadata overhead for data remapping and make
predictions for potentially reused data. Chameleon [2] modifies
the Instruction Set Architecture (ISA) to enable the operating
system to inform the added hardware of page allocations
and frees. The same as POM [3], Chameleon adopts the
segment restricted remapping mechanism for data remapping,
resulting in uneven NM utilization rates in different remapping
sets and frequent segment migration. Chameleon utilizes fast
swap for data migration. RHPM [6] is a hardware-based page
remapping design adopting the segment restricted remapping
mechanism. Page migration in a remapping set is decided
by the relative page hotness. Metadata is placed in NM and
cached in added hardware. In the case of metadata cache
misses, RHPM makes predictions for the location of requested
data. AGDM [5] is designed based on RHPM with the added
option to migrate data in two granularities. Memory footprint
predictions are made for potentially recurring discrete memory
access patterns during runtime. Both RHPM and AGDM
employ slow swap for data migration.
NM in hybrid mode. The aim of hybrid mode designs is to
combine the advantages of both cNM and mNM. Hybrid2 [23]
is a hardware-based design using a fixed small fraction of NM
as cNM and the remaining NM as mNM. Metadata for hybrid
memory management is stored in NM and cached in added
hardware. The cNM performs as a staging area to select the
data most suitable for migration. Data in cNM is evicted to
mNM or FM based on the migration traffic overhead. Hybrid2
performs fast swap for data migration between FM and mNM.
Baryon [24] is a hardware-based design leveraging memory
compression and data sub-blocking techniques to improve the
utilization of NM capacity and FM bandwidth. A small NM

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

13

0

1.0

2.0
G

eo
m

ea
n

N
M

 tr
af

fic

MPKI
High Medium Low All

Banshee AC UC Chameleon Hybrid2 AGDM Baryon PhoenixRHPM NOMAD

MPKI
High Medium Low All

G
eo

m
ea

n
FM

 tr
af

fic

(a) NM traffic (b) FM traffic

0

0.5

1.0

Fig. 18. NM traffic and FM traffic of Phoenix and state-of-the-art designs, normalized to BASE.

area is reserved to efficiently manage and stabilize the irregular
and frequently varying data layouts. Data migration between
FM and mNM is performed by using slow swap. In both
Hybrid2 and Baryon, the ratio of cNM to mNM is fixed and
the space of cNM and mNM is separate.

VI. CONCLUSION

This paper presents Phoenix, a novel hybrid memory system
that combines caching and migration. The ratio of cNM to
mNM is adjustable to exploit both temporal and spatial locality
benefits. Phoenix lowers the over-fetching risk and reduces
the data movement cost for mode switch between cNM and
mNM. A lightweight metadata prefetcher is employed to
improve the hit rate of the metadata cache and a fast&slow
swap mechanism is adopted to mitigate the metadata overhead
while maintaining high swap efficiency. In our evaluations,
Phoenix outperforms state-of-the-art designs by an average
of 18.2% and consumes orders of magnitude less metadata
storage space.

ACKNOWLEDGMENT

This work is supported by National Key Research and De-
velopment Program of China (Grant No. 2022YFB4500303),
National Natural Science Foundation of China (NSFC)
(Grant No. 62227809, 62302290), the Fundamental Re-
search Funds for the Central Universities, Shanghai Mu-
nicipal Science and Technology Major Project (Grant No.
2021SHZDZX0102), Natural Science Foundation of Shanghai
(Grant No. 22ZR1435400).

REFERENCES

[1] Song L, et al. Serpens: A high bandwidth memory based accelerator for
general-purpose sparse matrix-vector multiplication. Proceedings of the
59th ACM/IEEE Design Automation Conference. 2022: 211-216.

[2] Kotra J B, et al. Chameleon: A dynamically reconfigurable heterogeneous
memory system. 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2018: 533-545.

[3] Sim J, et al. Transparent hardware management of stacked DRAM as
part of memory. 47th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE, 2014: 13-24.

[4] Ryoo J H, et al. Silc-FM: Subblocked interleaved cache-like flat mem-
ory organization. IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2017: 349-360.

[5] Peng Z, et al. AGDM: An Adaptive Granularity Data Migration Strategy
for Hybrid Memory Systems. Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2023: 1-6.

[6] Peng Z, et al. RHPM: Using Relative Hotness to Guide Page Migration for
Hybrid Memory Systems. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2022.

[7] Prodromou A, et al. Mempod: A clustered architecture for efficient and
scalable migration in flat address space multi-level memories. IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2017: 433-444.

[8] Kokolis A, et al. Pageseer: Using page walks to trigger page swaps
in hybrid memory systems. IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2019: 596-608.

[9] Vasilakis E, et al. LLC-guided data migration in hybrid memory sys-
tems. IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2019: 932-942.

[10] Behnam P, et al. Redcache: reduced DRAM caching. 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020: 1-6.

[11] Qureshi M K, Loh G H. Fundamental latency trade-off in architecting
DRAM caches: Outperforming impractical sram-tags with a simple and
practical design. 45th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE, 2012: 235-246.

[12] Bojnordi M N, et al. Retagger: An efficient controller for DRAM
cache architectures. Proceedings of the 56th Annual Design Automation
Conference 2019. 2019: 1-6.

[13] Kim Y, et al. NOMAD: Enabling Non-blocking OS-managed DRAM
Cache via Tag-Data Decoupling. IEEE International Symposium on High-
Performance Computer Architecture. IEEE, 2023: 193-205.

[14] Zhou F, et al. Object Fingerprint Cache for Heterogeneous Memory
System. IEEE Transactions on Computers, 2023.

[15] Tan Y, Xie Y, Ma Z, et al. GATLB: a granularity-aware TLB to support
multi-granularity pages in hybrid memory system. Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2022: 903-908.

[16] Lee T, Monga S K, Min C, et al. MEMTIS: Efficient Memory Tiering
with Dynamic Page Classification and Page Size Determination. Proceed-
ings of the 29th Symposium on Operating Systems Principles. 2023: 17-
34.

[17] Babaie M, Akram A, Lowe-Power J. Enabling Design Space Exploration
of DRAM Caches for Emerging Memory Systems. IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2023: 340-342.

[18] Hong J, Cho S, Park G, et al. Bandwidth-Effective DRAM Cache for
GPU s with Storage-Class Memory. IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2024: 139-155.

[19] Jevdjic D, et al. Die-stacked dram caches for servers: Hit ratio, latency,
or bandwidth? have it all with footprint cache. ACM SIGARCH Computer
Architecture News, 2013, 41(3): 404-415.

[20] Lee Y, et al. A fully associative, tagless DRAM cache. ACM SIGARCH
computer architecture news, 2015, 43(3S): 211-222.

[21] Jevdjic D, et al. Unison cache: A scalable and effective die-stacked
DRAM cache. 47th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE, 2014: 25-37.

[22] Yu X, et al. Banshee: Bandwidth-efficient DRAM caching via soft-
ware/hardware cooperation. Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. 2017: 1-14.

[23] Vasilakis E, et al. Hybrid2: Combining caching and migration in hybrid
memory systems. IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2020: 649-662.

[24] Li Y, et al. Baryon: Efficient Hybrid Memory Management with Com-
pression and Sub-Blocking. IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2023: 137-151.

[25] Hua Y, et al. Bumblebee: A MemCache Design for Die-stacked and
Off-chip Heterogeneous Memory Systems. 60th ACM/IEEE Design Au-
tomation Conference (DAC). IEEE, 2023: 1-6.

[26] Sun Y, Yuan Y, Yu Z, et al. Demystifying cxl memory with genuine cxl-
ready systems and devices. Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture. 2023: 105-121.

[27] Liu W, He X, Liu Q. Exploring Memory Access Similarity to Improve
Irregular Application Performance for Distributed Hybrid Memory Sys-
tems. IEEE Transactions on Parallel and Distributed Systems, 2022, 34(3):
797-809.

[28] Sodani A, et al. Knights landing: Second-generation intel xeon phi
product. IEEE micro, 2016, 36(2): 34-46.

[29] Giannoula C, et al. DaeMon: Architectural Support for Efficient Data
Movement in Fully Disaggregated Systems. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 2023, 7(1): 1-36.

[30] Cook B, et al. Performance variability on xeon phi. High Perfor-
mance Computing: ISC High Performance 2017 International Workshops.
Springer International Publishing, 2017: 419-429.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

14

[31] Kaur G, et al. Implementation and Comparison of Direct mapped and 4-
way Set Associative mapped Cache Controller in VHDL. 8th International
Conference on Signal Processing and Integrated Networks (SPIN). IEEE,
2021: 1018-1023.

[32] N. Jain, et al. Reducing conflict misses using fraction associative
mapping. 2nd IEEE International Conference on Parallel, Distributed and
Grid Computing, Solan, India, 2012, pp. 349-354.

[33] Kosmidis L, et al. A cache design for probabilistically analysable real-
time systems. Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2013: 513-518.

[34] HBM2. JEDEC. Retrieved December 26, 2023 from https://www.jedec
.org/standards-documents/docs/jesd235a.

[35] DDR4 datasheet. Micron. Retrieved December 26, 2023 from https://ww
w.micron.com/products/dram/ddr4-sdram/part-catalog/mt40a1g8sa-062e.

[36] Pawlowski J T. Hybrid memory cube (HMC). IEEE Hot chips 23
symposium (HCS). IEEE, 2011: 1-24.

[37] NAS Benchmark. NAS. Retrieved November 2, 2023 from https://goo.g
l/jQvMKbl.

[38] Stream Benchmark. STREAM. Retrieved November 2, 2023 from
https://www.cs.virginia.edu/stream/.

[39] Singh S, Awasthi M. Memory centric characterization and analysis of
spec cpu2017 suite. Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering. 2019: 285-292.

[40] R. Panda, et al. Wait of a Decade: Did SPEC CPU 2017 Broaden
the Performance Horizon?. IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2018: 271-282.

[41] S. Song, et al. Experiments with SPEC CPU 2017: Similarity, Balance,
Phase Behavior and SimPoints. Tech. Rep. TR-180515-01, LCA Group,
Department of Electrical and Computer Engineering, The University of
Texas at Austin, 2018.

[42] Tsukada S, et al. A Metadata Prefetching Mechanism for Hybrid
Memory Architectures. IEICE Transactions on Electronics, 2022, 105(6):
232-243.

[43] Intel. 2020. Intel optane DC persistent memory. Retrieved Decem-
ber 25, 2023 from https://www.intel.com/content/www/us/en/architecture-
and-technology/optane-dc-persistent-memory.html.

[44] Burr G W, et al. Phase change memory technology. Journal of Vacuum
Science & Technology B, 2010, 28(2): 223-262.

[45] Condit J, et al. Better I/O through byte-addressable, persistent memory.
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. 2009: 133-146.

[46] Li, Huaicheng, et al. Pond: CXL-based memory pooling systems for
cloud platforms. Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2. 2023.

[47] Hua, Yifan, et al. PMSort: An adaptive sorting engine for persistent
memory. Journal of Systems Architecture 120 (2021): 102279.

[48] Y. Chen, et al. HiNFS: A persistent memory file system with both
buffering and direct-access. ACM Transactions on Storage (ToS) 14.1
(2018): 1-30.

[49] Hua, Yifan, et al. Redesigning the Sorting Engine for Persistent Memory.
Database Systems for Advanced Applications: 26th International Confer-
ence, DASFAA 2021, Taipei, Taiwan, April 11–14, 2021, Proceedings,
Part III 26. Springer International Publishing, 2021.

[50] Cruz, Eduardo HM, et al. Optimizing memory locality using a locality-
aware page table. IEEE 26th International Symposium on Computer
Architecture and High Performance Computing. IEEE, 2014: 198-205.

[51] Feng, Yi, and Emery D. Berger. A locality-improving dynamic memory
allocator. Proceedings of the 2005 workshop on Memory system perfor-
mance. 2005: 68-77.

[52] Goglin, Brice. Memory footprint of locality information on many-
core platforms. IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2018: 1283-1292.

[53] M. A. Heroux, et al. Improving Performance via Mini-applications.
Sandia National Laboratory Technical Report, 2009.

[54] C. Chou, et al. CAMEO: A Two-Level Memory Organization with
Capacity of Main Memory and Flexibility of Hardware-Managed Cache.
IEEE/ACM International Symposium on Microarchitecture, 2014.

[55] Akram, Ayaz. The Feasibility of Utilizing Low-Power DRAM in Dis-
aggregated Memory Systems. Channels 1.1: 2.

[56] Van Doren, Stephen. Hoti 2019: Compute express link. IEEE Sympo-
sium on High-Performance Interconnects (HOTI). IEEE, 2019.

[57] Jack A Mandelman, et al. Challenges and future directions for the scaling
of dynamic random-access memory (dram). IBM Journal of Research and
Development, 46(2.3):187–212, 2002.

[58] Ruan Z, et al. AIFM:High-Performance,Application-Integrated far mem-
ory. 14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 20). 2020: 315-332.

[59] Sherwood T, et al. Automatically characterizing large scale program
behavior. ACM SIGPLAN Notices, 2002, 37(10): 45-57.

[60] Panda R, et al. Wait of a decade: Did spec cpu 2017 broaden the per-
formance horizon?. IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2018: 271-282.

[61] Binkert N, et al. The gem5 simulator. ACM SIGARCH computer
architecture news, 2011, 39(2): 1-7.

[62] Rosenfeld P, et al. DRAMSim2: A cycle accurate memory system
simulator. IEEE computer architecture letters, 2011, 10(1): 16-19.

Yifan Hua (Student Member, IEEE) is currently a
Ph.D. candidate at Shanghai Jiao Tong University,
China. His research interests include non-volatile
memory systems, processing-in-memory systems,
and hybrid memory management.

Shengan Zheng received the B.S. and Ph.D. degrees
from Shanghai Jiao Tong University, in 2014 and
2019, respectively. He is currently an assistant pro-
fessor at Shanghai Jiao Tong University. His research
interests include memory systems, storage systems,
and distributed systems.

Weihan Kong is currently pursuing the Ph.D. degree
in Shanghai Jiao Tong University. His research in-
terests include hybrid memory system and near data
processing.

Cong Zhou is currently a Ph.D. student at Shanghai
Jiao Tong University, China. His research inter-
ests include near-memory computing and distributed
memory systems.

Linpeng Huang (Senior Member, IEEE) received
his M.S. and Ph.D. degrees in computer science
from Shanghai Jiao Tong University in 1989 and
1992, respectively. He is a professor of computer
science in the department of computer science and
engineering, Shanghai Jiao Tong University. His
research interests include distributed systems and
service oriented computing.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3455237

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2024 at 01:18:19 UTC from IEEE Xplore. Restrictions apply.

